
Journal of Statistical Physics, Vol. 101, Nos. 1�2, 2000

A Simple Generalized Excitability Model Mimicking
Salient Features of Neuron Dynamics1
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A generalization of the FitzHugh��Nagumo model for excitability is provided
to account for salient features of Inferior Olive neurons. The base state is a limit
cycle and excitability appears as spiking over peaks of the oscillations. The
response of the model to various types of external stimulus is also presented. In
particular, we show the relevance of an appropriate balance between amplitude
and duration of the stimulus.
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1. INTRODUCTION

Inferior Olive (IO) cells and other neurons exhibit autonomous, spon-
taneous and fairly robust regular quasi-harmonic oscillations that are
called sub-threshold oscillations, with practically uniform amplitude and
frequency throughout the IO.(1�3) The behavior of these cells submitted to
an external current, and various drugs has also been investigated and
various threshold phenomena have been identified. Spontaneously or
following a stimulus, onset, splitting and recreation of phase clusters of IO
neurons have also been observed.

The effect of an external current can result in a violent response of the
cell (and eventual emission of action potentials) before coming back to its
sub-threshold oscillation or to rest. From a dynamical point of view, this
phenomenon may be understood as a form of excitability. Generally,
excitability has been considered when there exists a steady state and
beyond a threshold, a strong enough perturbation yields a huge response
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of the system after which it comes back to the original steady state.(4�6)

Here we consider the same phenomenon when the base state is oscillatory.
We shall not deal with a strict comparison with experiment, but rather we
shall concentrate on the qualitative properties of a model that we feel may
prove useful in various other contexts besides IO neurobiology. Accor-
dingly, the model that we are introducing now is in the spirit of recent
publications devoted to a general discussion about the transition from
oscillatory to spiking behavior in neurons.(7�9)

2. DYNAMICAL MODEL

The paradigmatic system exhibiting excitability is the well known
FitzHugh�Nagumo (FHN) model, (5, 6) a simplified albeit significant version
of the Hodgkin�Huxley set of equations dealing with pulse propagation
along axons.(10, 11) The FHN equations are:

{ut=(&v+ f (u))�=
vt=&v+:u

(1)

where f (u)=&u(u&1)(u&#) and the variables u and v mimick, respec-
tively, the cross membrane potential and a recovery variable that captures
the result of most of the significant ionic currents involved in the dynamics.
The smallness parameter = is the ratio between the two time scales
associated with the corresponding time evolution of u and v. Loosely
speaking, it is related to the high cell membrane capacity. For : sufficiently
large, Eqs. (1) have a single fixed point, the origin, and it is linearly stable.
A positive value of # accounts for the threshold to destabilise the base state,
for finite disturbances, thus leading to a significant large excursion in the
(u, v) plane. The smallness of = constrains the dynamics to a ``pseudo
invariant manifold,'' i.e., M : v= f (u). In fact even small differences
between v and f (u) produce a rapid adjustment of u because of the small
denominator in the evolution equation of this variable. The second equa-
tion promotes the slow change of v that tunes again u, as graphically
illustrated in Fig. 1.

The above mentioned two-dimensional system can be modified in
order to show oscillation and excitability, simply by changing the order of
the polynomial function f (u), in such a way that it possesses an extra mini-
mum and an extra maximum (for this it is enough a fifth order polynomial).

Provided that the intersection of f (u) and v=:u occurs between the
first minimum and the first maximum, the model performs relaxation
oscillations as in the van der Pol oscillator.(12) Adding other minimum-
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Fig. 1. Phase portrait (u, v) of a FHN system (Eqs. (1)) with parameter values ==0.001,
#=0.2 and :=0.5. The points marked with the labels SS and B are respectively the steady
state and the beginning of the trajectory. The continuous and dashed lines represent the
graphs of the nullclines u* =0 and v* =0 respectively. The trajectory of the system is marked
by a line with bullets at equal time intervals to highlight the differences in the velocity in
different parts of the trajectory. Arrows show the direction of the flow.

maximum pairs, one could be also able to account for more than one
instability threshold.

For reasons that will be clear further below, we choose a different
approach. We add a third variable, w, to system (1). Our idea is to con-
struct as a base state, a stable limit cycle, around the origin, lying on the
three dimensional surface generated by M. Accordingly, we consider the set
of equations:

ut=( f (u)&v)�=

{vt=Ar&0w&r(r2+w2) (2)

wt=Aw+0r&w(r2+w2)

with r=v�:&u. This is one possible choice that satisfies our purpose.
Now, besides the origin (0, 0, 0), if :<(1&#)2�4, we also have as

steady states of Eqs. (2) (u\ , :u\ , 0), with u\=(1+#\- (1&#)2&4:)�2.
For simplicity, however, we take Eqs. (2) with a single fixed point (the
origin) and hence, : is taken high enough. The linear stability analysis
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shows that the origin is stable when the parameter A is negative and large,
in absolute value. For this range of parameter values, rescaling the time by
|A|, so using T=|A| t. the system (2) reduces to a straightforward generaliza-
tion of the FHN Eqs. (1):

uT=( f (u)&v)�(= |A| )

{vT=u&v�:
wT=&w

Let us now come back to the system (2). The fixed point becomes
unstable through an Andronov�Hopf bifurcation (AHB) when the following
relation is verified:

&#A:(#+:+#:)+(A2(2#:+#+:+:2#)&02:2) =+O(=2)=0

Then, an oscillatory instability occurs when # becomes negative as also
expected for Eqs. (1). However, if we take # greater than zero, there is an
AHB at

A=&
02:

#(#+#:+:)
=+O(=2)

The rationale behind the onset of this limit cycle is as follows. Due to
the smallness of =, the variable u in the neighborhood of the origin becomes
slaved by v. As a consequence, the first equation of system (2) decouples
from the second and the third ones. In this limit, the latter two equations
become:

{rt=;[(A&(r2+w2)) r&0w]
wt=(A&(r2+w2)) w+0r

(3)

with ;=1�:+1�#. Note that Eqs. (3) appear like the normal form of an
AHB. This system (3) undergoes the AHB when A=0, and the frequency
of the expected limit cycle at onset is &=0 - ;+O(=). The phase portrait
near the AHB is sketched in Fig. 2a. The mentioned limit cycle represents
the sub-threshold oscillation of the IO cells.

As = is small, the oscillatory flow is confined to the transversal
neighborhood (of size =) of the manifold M. Near this transition, the
oscillation is quasi-harmonic, and the amplitude of the oscillation increases
like - A. When the limit cycle approaches the local minimum of M, a drastic
change in the time evolution is expected. An estimate of the threshold of
this transition is obtained by finding when the amplitude of the limit cycle
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Fig. 2. Sketch of the phase portrait (u, v, w) of the system (2) when the controlling
parameter 0 is small enough. (a) Parameter values near onset of the limit cycle (subthreshold
oscillations). (b) Relaxation oscillation regime (excitable oscillations).

Fig. 3. Bifurcation diagram of periodic solutions for the system (2). The maximum of the
first variable, u, is plotted as function of the value of the parameter A. The unstable (resp.
stable) branches are drawn with dashed (resp. solid) lines. The instability occurring at the
point marked with a circle, APD , corresponds to a period-doubling bifurcation. The lower
(resp. upper) stable branch corresponds to sub-threshold (resp. spiking) oscillations.
Parameter values: ==0.02, #=0.2, 0=0.04, and :=0.3.
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becomes equal to the curvilinear arc distance on the cubic surface separating
the origin from the local minimum, u1 , of M.

Since we predict the disappearance of the sub-threshold oscillations,
we expect the presence of another attractor. A potential attractor
corresponds to the relaxation oscillation between the branches of the
manifold M, giving rise to the spiking oscillations that are characteristic
for the system (1) (Fig. 2b). Increasing the value of A helps the onset of the
spiking oscillations.

The qualitative picture presented above has been quantitatively
checked by numerically integrating Eqs. (2). Using the software auto97, (14)

we performed a continuation of the quasi-harmonic periodic orbit, when
the value of the controlling parameter A is changed. A typical bifurcation
diagram is shown in Fig. 3.

The sub-threshold oscillation becomes unstable when the parameter A
becomes large enough, typically through a period doubling. With parameter
values as in Fig. 3 the period doubling occurs at A=APD &8.7 10&3.
Between A=A1&3.7 10&3 and A=A2&1.2 10&2, the system shows
bistability between the (limit cycle) substhreshold oscillations and the spiking.

As the aim of this work is to find a regime of parameter values where
the substhreshold oscillations are excitable, we take A in the range
AHB<A<A1 for which we refer to our generalization of excitability. Note
that, depending on the values of the other parameters, the subthreshold
oscillations may not yield to excitability, as A1 can be lower than AHB .

When the controlling parameter, A, becomes slightly higher than APD ,
Eqs. (2) may exhibit irregular behavior (Fig. 4). One of the Lyapunov
exponents is slightly positive: (6.5\0.5) 10&3 for the values of parameters
corresponding to Fig. 4. This attractor is therefore chaotic.

Let us emphasize the role of the third variable added to Eqs. (1). First
of all, while in the model presented above we have a single parameter
governing the AHB and its continuation, namely A, in a two-variable
model such as

{ut=\&v+ :
5

i=1

aiui+<=

vt=&v+:u
(4)

the bifurcation parameter would be a1 but, proceeding in the supercritical
region, the coefficients ai (i=2,..., 5) become drastically relevant and hence
we cannot continue the bifurcation diagram following only the first coef-
ficient, a1 , as in Fig. 3. On the other hand, in system (2) the parameter 0
is selecting the frequency of subthreshold oscillations, while in system (4)
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Fig. 4. (a) Irregular time series (b) is an enlargment of (a). Parameter values: ==4 10&2,
#=0.2, 0=0.035, :=0.5, and A=7.058 10&3.

there is no way to change the frequency of spiking and the one of sub-
threshold oscillations separately.

3. RESPONSE OF THE DYNAMICAL SYSTEM TO AN
EXTERNAL STIMULUS

Let us investigate the behavior of model (2) when an external stimulus
is provided. As u is loosely related to the cross-membrane potential, it
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seems natural to model an external input J(t) by an extra term in the first
equation of (2)

ut=( f (u)&v)�=+J(t)

{vt=Ar&0w&r(r2+w2) (5)

wt=Aw+0r&w(r2+w2)

We will refer to J(t) as either ``the stimulus'' or ``the current'' without
really going beyond the mere analogy of model (5) with an underlying
physiological system. When J(t) is constant, if the sign of the current is
positive (resp. negative), the cell is said to be depolarized (resp. hyper-
polarized). The main effect of this stimulus is a shift of the manifold M, by
an amount equal to =J(t). As a consequence, the intersection of the
nullclines (the fixed point) is also displaced. Various forms of the stimulus,
namely constant, Heaviside step function and square signals have been
considered.

3.1. Continuous Stimulus

The numerical continuation of the base state��that may be either the
fixed point or the limit cycle��shows that there exists a critical value of the
continuous stimulus, J*, that leads to the instability of the rest state, as
shown in Fig. 5. Assume that AHB<A<A1 , so that the base state is a limit
cycle. From now on, we restrict consideration to a parameter regime near
the AHB. When the intensity of the external stimulus is increased, the loca-
tion of the limit cycle on M changes. For J=J*, the limit cycle reaches
the local minimum u1 , and thus becomes unstable.

3.2. Heaviside Stimulus

A constant current is applied at t=0. If the stimulus amplitude is
small, the system just relaxes to the sub-threshold oscillations, i.e., to the
limit cycle, but there also exists a critical amplitude of the injected current,
namely J1 , which forces the system to produce a spike before returning to
the quasi-harmonic oscillation. The excitation is favored when u is near its
maximum (or v minimum). This is a consequence of how the model (5)
was built. We can give an estimate of the value of J1 simply taking into
account that the smallness of = produces a trajectory almost parallel to the
u-axis, so, in the most favourable case, i.e., v is in its minimum, we would
have to provide a quantity at least

J1& (min[v(t)]& f (u1))�=
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Fig. 5. Bifurcation diagram obtained when a continuous stimulus is applied to the system.
In both panels, for computational convenience, we have scaled quantities with the numerical
value given to =, hence the abscissa runs as I==J with ==0.02. (a) A=&10&2, the only
attractor is a fixed point when J=0. The thick line corresponds to the branch of the fixed
point. The thin line is the branch of limit cycles. (b) A=10&3, the only attractor is a limit
cycle when J=0. The critical current corresponds to the forcing value that leads to instability
of the rest state.
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Actually this is not sufficient because, although the flow was initially
below M (i.e., v< f (u)), the system may cross again the central branch of
the manifold M��that is like an ignition barrier��, before coming back to
its rest state. When the flow approaches the barrier, the system is more
excitable. Such a feature has been experimentaly observed with IO cells in
vitro.(1�3) The minimal distance from the flow location to this barrier can
be considered as an excitability measure.

3.3. Square Stimulus

A constant current is applied for 0<t<T. When the stimulus is
applied, depending on its amplitude J and its duration T, the model (5)
shows responses that are typical of excitable systems. A stimulus of too
short duration, even with a high current intensity, may not excite the
system. Furthermore, whatever the length of the time duration of the
stimulus, if its amplitude is below J1 , no excitation can occur. Thus, the
significant quantity is the appropriate balance between the amplitude and
the duration of the stimulus. When the value of = tends to zero, the
response is instantaneous, as the caracteristic time evolution of u scales
with =. The system is excited if at the end of the stimulus, the flow has
reached a point on the other side of the barrier. We have checked these
heuristic results by numerically integrating the Eqs. (5). In numerical
experiments, guided by what has been measured in experiments, (2) we have
also considered a parameter regime such that the period of subthreshold
oscillations is about three times the period of the spikes. We choose
==0.02, #=0.2, 0=0.04, and :=0.3. For a square signal stimulus, two
thresholds appear, one correlates with the duration of the stimulus and the
other with the amplitude. For example, when the amplitude of the stimulus
is 0.5, for a time duration T=0.53, no excitation of the system is observed,
whereas for T=0.54, we observe a spike as a response to the stimulus.
When the duration of the stimulus is 2.0, there exists a critical value,
J1(T ), that excites the system (J1(T )&0.32 in Fig. 6).

Note that the response of the model depends also on the time instant
when the stimulus is applied. As already said, at the peak of the oscillations
of u, it is easier to excite the system (Fig. 6b). Note the ``rebound'' after the
spiking shown in Fig. 6b which is characteristic of the IO cells.(2) This
rebound spike is associated in our model to the return to the oscillatory
base state.

3.4. Metastable Spiking After a Stimulus

In experiments(2) a single stimulus can produce a train of two or more
spikes even if the stimulus lasts less than the spike duration. This can be
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Fig. 6. Response of Eqs. (5) to an external stimulus at two instants of time. (a) When t=277
and t=597, a stimulus of amplitude 0.32 and duration 2 is applied. No significant response
is observed. (b) When t=377 and t=697, a stimulus of amplitude 0.321 and duration 2 is
applied. We observe a response to the first stimulus, but not to the second. The difference
between the two excitations is that the first one is applied at the peak of the signal u, and the
second off-peak.

interpreted as a kind of ``metastability'' of the spiking solution. We can
observe this behavior also in system (5) choosing parameter A close to
(and smaller than) A1 . In this regime of parameter values the spiking solu-
tion is not yet a stable limit cycle, as it appears at A=A1 via a saddle-node
bifurcation of limit cycles. Nevertheless, the flow may be trapped during a
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Fig. 7. Response of Eqs. (5) to a square stimulus for the parameter regime near the
appearance of the spiking oscillations. The stimulus is applied at t=0, and has a duration
T=10. As in Fig. 5, for mere computational purpose, we scale J with the actual numerical
value given to =, hence we use I==J. (a) Metastable spiking obtained for I=0.018. (b) Num-
ber of spikes as a function of the amplitude of the stimulus. Parameter values: ==0.02, #=0.2,
0=0.04, :=0.3.
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finite time in the region of the appearance of the new attractor as if the
system were reminiscent of its existence. This can also happen for A close
to (but higher than) A1 . However, in this case, as there is bistability, a
stimulus of appropriate time duration and intensity can also put the system
in the still small basin of attraction of the spiking solution.

A multiple-spike response to a stimulus is presented in Fig. 7a. The
dependence of the number of spikes, as a function of the stimulus intensity,
is shown in Fig. 7b. There exists a finite range of values of J leading to
metastable spiking. For values of J less than J1(T ) no spike is observed.
Increasing J the number of spikes produced by a single stimulus grows up
to a ``saturation'' value. Further increase of the current intensity produces
a bifurcation at J=J2 such that the line v=:u, w=0 intersects the
manifold v= f (u)+=J in the central (unstable) part and hence the number
of spikes depends only on the duration of the stimulus. Eventually, for J

very large, the intersection occurs in the second stable branch of the
manifold and hence a stable limit cycle appears. The stimulus produces an
overshooting followed by a relaxation to the limit cycle.

4. CONCLUSION

We have provided a natural generalization of the excitability concept
long ago introduced by FitzHugh and others and we have shown it helps
understanding, at least to a qualitative albeit significant level, some salient
features of the IO neuron dynamics. The model exhibits spiking behavior
upon an oscillatory (limit cycle) base state.

We feel that, in view of the geometrical approach here taken, the
model we have studied may prove useful in other realms of neurobiology,
nonlinear science and engineering.

ACKNOWLEDGMENTS

The authors acknowledge enlightening discussions with Profs. R. R.
Llina� s, L. Fortuna and P. Arena. This work has been supported by the
Spanish Ministry of Education and Culture (Grant PB 96-599) and by the
EU (TMR Grant FMRX-CT96-0010). Part of the numerical simulations
have been performed thanks to the NLKit software developped at Institut
Non-Line� aire de Nice.

REFERENCES

1. R. Llina� s and Y. Yarom, J. Physiol. 315:569 (1981).
2. R. Llina� s and Y. Yarom, J. Physiol. 376:163 (1986).

677A Simple Generalized Excitability Model



3. L. S. Benardo and R. E. Foster, Brain Res. Bull. 17:773 (1986).
4. For a survey see E. Meron, Pattern Formation in Excitable Media (Springer, New York,

1992).
5. R. FitzHugh, Biophys. J. 1:445 (1961).
6. J. S. Nagumo, S Arimoto, and S. Yoshizawa, Proc. I.R.E. 50:2061 (1962).
7. X. Wang and J. Rinzel, in The Handbook of Brain Theory and Neural Networks, M. Arbib,

ed. (MIT Press, 1995), pp. 686�691.
8. H. D. I. Abarbanel, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Huerta, M. M.

Sushchik, and L. L. Rubchinsky, Physics-Uspekhi 39:337 (1996).
9. H. Haken, Principles of Brain Functioning (Springer-Verlag, Berlin, 1996).

10. A. L. Hodgkin and A. F. Huxley, J. Physiol. 177:500 (1952).
11. J. Cronin, Mathematical Aspects of Hodgkin�Huxley Neural Theory (Cambridge University

Press, Cambridge, 1987).
12. B. van der Pol, London, Edinburgh and Dublin Phil. Mag. 3:65�80 (1927).
13. H. A. Braun, H. Wissing, K. Scha� fer, and M. C. Hirsh, Nature 367:270 (1994).
14. E. J. Doedel, H. B. Keller, and J. P. Kerne� vez, Int. J. Bifurcation Chaos 1:3, 493 (1991).

678 Giaquinta et al.


